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ABSTRACT This paper examines the problem of planning and stabilizing the trajectory of one smooth body
rolling on the surface of another. The two control inputs are the angular velocity of themoving body about two
orthogonal axes in the contact tangent plane; spinning about the contact normal is not allowed. To achieve
robustness and computational efficiency, our approach to trajectory planning is based on solving a series
of optimization problems of increasing complexity. To stabilize the trajectory in the face of perturbations,
we use a linear quadratic regulator. We apply the approach to examples of a sphere rolling on a sphere and an
ellipsoid rolling on an ellipsoid. Finally, we explore the robustness and performance of the motion planner.
Although the planner is based on non-convex optimization, in practice the planner finds solutions to nearly
all randomly-generated tasks, and the solution trajectories are smoother and shorter than those found in
previous work in the literature.

INDEX TERMS Robot kinematics, motion planning, controllability, state feedback, rolling.

I. INTRODUCTION
This paper examines the problem of planning and stabilizing
the trajectory of one smooth body rolling on the surface
of another. This is relevant for systems such as a ball-type
mobile robot rolling over smooth terrain (Figure 1(a)) or a
robot hand planning multi-finger rolling motions to reorient
an object (Figure 1(b)). Much research on rolling motion
planning has been limited to specialized geometries such as
planes and spheres. In this work we present a method to
generatemotion plans and stabilizing feedback controllers for
general, smooth, three-dimensional objects in rolling contact.

The two rolling objects are modeled as a well-known
nonholonomic system with five degrees of freedom and two
controls. Collectively the contact configuration is written q =
(u1, v1, u2, v2, ψ), which gives the contact location (u1, v1)
on object 1, (u2, v2) on object 2, and the angle of ‘‘spin’’ ψ
between contact frames (Figure 2). The two control inputs are
the angular velocities� = (ωx , ωy) of themoving body about
two orthogonal axes in the contact tangent plane; spinning
about the contact normal is not allowed. We refer to the
no-spin assumption as ‘‘pure rolling.’’ Since we assume the
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FIGURE 1. Examples of robot tasks that can be modeled as objects in
rolling contact. (a) A ball-type mobile robot on a smooth surface.
(b) Robot fingers rolling over a smooth object.

velocities are directly controlled, we refer to the equations of
motion as the ‘‘first-order kinematics.’’

Our approach to trajectory planning is based on solving
a series of optimization problems of increasing complexity.
We first solve a convex problem that uses the two rolling
velocity inputs to drive two of the five configuration vari-
ables directly to their desired values. This motion serves as
the initial trajectory guess for direct-collocation constrained
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FIGURE 2. Objects 1 and 2 contact at the origin of frames {c1} and {c2},
but are shown separated for clarity. Collectively the contact configuration
is written q = (u1, v1,u2, v2, ψ). The surfaces of objects 1 and 2 are
orthogonally parameterized by (u1, v1) and (u2, v2), respectively. At the
point of contact, the unit xi - and yi -axes of the coordinate frame {ci } are
in the direction of increasing ui (and constant vi ) and increasing vi (and
constant ui ), respectively, and the contact normal ni is the cross product
xi × yi . Rotating frame {c2} by ψ about the n1-axis of frame {c1} aligns
the x2-axis of frame {c2} and the x1-axis of frame {c1}. The controls for
pure-rolling (no relative spin about the contact normal) are the relative
angular velocities � = (ωx , ωy ) about the x2- and y2-axes of the contact
frame {c2} [1].

optimization. Using this initial guess, the optimization solves
the full five-dimensional trajectory-planning problem. The
optimization first solves for a trajectory history that is rep-
resented coarsely, using a small number of state and control
segments. The solved-for controls are then simulated by a
more accurate, higher-order numerical integration method
than the integrator implicit in the constraints in the nonlinear
optimization. If the simulated trajectory satisfies the error
tolerances, the problem is solved. If not, the previous solution
is used as an initial guess, the number of state and control
segments is increased, and the optimization is called again.

The motion planner is structured this way to balance three
goals: 1) increasing the likelihood of finding a solution;
2) decreasing the computation time required to find a solu-
tion; and 3) optimizing the quality of the solution, as mea-
sured by the trajectory length and control cost. In our tests,
an initial optimization with a fine control discretization often
takes an unnecessarily long time to converge or even fails
to converge to a feasible solution. The coarse initial guess
followed by successive refinement yields higher-quality solu-
tions faster and more consistently. The iterative refinement
process acts as a form of regularization.

To stabilize a planned trajectory to small perturbations,
we use linear feedback control based on a linear quadratic
regulator. For this to be successful, the linearized trajectory
must be controllable, so we examine the controllability of
rolling trajectories and provide examples of uncontrollable
trajectories.

Our primary contributions are a robust motion planner for
generating rolling motions of general smooth objects and an
approach to stabilize those trajectories.

A. PAPER OUTLINE
Section II reviews previous work related to this paper.
Section III summarizes the rolling kinematics, and Section IV

formally states the problemwe are solving. SectionV outlines
the design of the motion planner, and Section VI analyzes
the controllability of rolling trajectories. Section VII demon-
strates planning for a sphere rolling on a sphere and an
ellipsoid on an ellipsoid, applying feedback controllers to
stabilize the planned trajectories from perturbations to the
initial configurations. Section VIII analyzes the robustness
and performance of the planner for random goal states and
different methods of generating initial trajectory guesses.
Section IX summarizes the results and describes planned
future work. Some background on differential geometry and
derivations of terms used in the kinematics expressions are
given in the Appendix.

II. RELATED WORK
A. MODELING OF ROLLING SURFACES
First-order kinematics addresses the rolling problem where
the relative contact velocities are directly controlled. The
second-order kinematics is a generalization of the first-order
model where the relative accelerations at the contact are
controlled. Dynamic rolling assumes that forces and torques
are controlled.

Cai and Roth derive the first- and second-order contact
kinematic equations for two objects in contact [2]. They focus
on the special cases of pure translation and pure rotation about
the contact point. They only consider the four-dimensional
evolution of the contact points on the objects, not the full
five-dimensional configuration.

Montana derives the first-order contact kinematics for
two 3D objects in contact [3]. His method models the full
five-dimensional configuration space, but it is not easily gen-
eralized to second-order kinematics or dynamics. First- and
second-order contact equations were derived by Sarkar et al.
in [4] and published again in later works [5], [6]. Errors in
the published equations for second-order contact kinematics
in [4]–[6] were corrected in our recent work [1]. Each of [1],
[3]–[6] assumes an orthogonal parameterization, as shown
in Figure 2. Chitour et al. survey results on the pure rolling
problem for surfaces represented as manifolds and analyzed
using Riemannian geometry and geometric control theory [7].

B. MOTION PLANNING FOR ROLLING SYSTEMS
First- and second-order roll-slide kinematics, as discussed
above, allow sliding at the contact, but we focus on plan-
ning for first-order systems in pure-rolling contact. This is a
well-known driftless nonholonomic system, where the rolling
constraints do not necessarily translate to constraints on the
achievable relative configuration.

Lafferriere and Sussmann give a method for motion plan-
ning and feedback control for nonholonomic systems without
drift, and the methods are exact for systems with nilpotent,
or feedback-nilpotentizable, Lie algebras [8]. Murray pro-
vides a method of finding a nilpotent basis for nonholonomic
systems and shows how to generate plans for systems includ-
ing a disk rolling on a plane [9]. The general pure-rolling
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problem does not satisfy the nilpotent condition, so Oriolo
and Vendittelli generalize the method and present an algo-
rithm based on nilpotent approximation and iterative steering
to achieve asymptotic stability for the plate-ball system [10].

Murray and Sastry outline a special class of nilpotenti-
zable, nonholonomic systems called chained-form systems.
They introduce sufficient conditions to check if a system
can be converted to chained form, and they give a method
to plan motions between arbitrary states for these systems
(e.g., a kinematic car or a car pulling a trailer) [11]. Fliess
et al. outline methods to represent nonlinear systems as dif-
ferentially flat [12]. Such systems are amenable to simplified
motion planning methods. Bicchi and Sorrentino show that
the rolling system cannot be put into chained form and is not
differentially flat, so those methods cannot be applied [13].

There are many works on motion planning for rolling
systems that assume special geometries such as planes and
spheres. Li and Canny derive the first-order contact equations
for rolling objects parameterized by orthogonal coordinate
systems, analyze the controllability properties, and provide
a geometric motion planning algorithm for a sphere on a
plane [14]. Marigo and Bicchi plan motions for general sur-
faces on a plane in the presence of obstacles using local
approximations of Li and Canny’s method [15]. Alouges et al.
demonstrate the use of numerical continuation methods to
generate open-loop motion plans for a general surface rolling
on a plane without slipping [16]. Rehan and Reyhanoglu
derive geometric planners for a sphere rolling on a smooth
surface and demonstrate the method for a sphere rolling on a
plane and on another sphere [17].

C. ROLLING CONTROLLABILITY AND FEEDBACK
A pure-rolling system is locally controllable from a given
initial configuration if the set of locally reachable configura-
tions, using only the two controls, is five dimensional. Li and
Canny study the controllability of rolling bodies by taking Lie
brackets of the rolling vector fields to generate higher-order
vector fields [14]. They conclude that a sphere can reach any
contact configuration on the plane by pure rolling, and that a
sphere can reach any contact configuration by pure rolling on
another sphere if their radii are different. For more general
body geometries, however, deriving symbolic Lie bracket
vector fields is cumbersome.

Marigo and Bicchi study the controllability of rolling
bodies with regular surfaces, derive admissibility conditions
for rolling contacts, and define necessary conditions for the
reachability of rolling contacts [18]. They provide an in-depth
analysis of the types of surfaces and initial conditions that
cause the reachable set to drop from five to two dimen-
sions. Agrachev and Sachkov (Section 24.4 of [19]) show
that two objects in rolling contact are controllable when
their local Gaussian curvatures are not equal. When the local
Gaussian curvatures are equal, the three nonholonomic con-
straints become integrable, reducing the reachable set to a
two-dimensional subset of the full five-dimensional config-
uration space. Krakowski et al. provide examples of when

the rolling system fails to be controllable [20]. Feedback
stabilization of rolling is addressed by Walsh et al., who
present a control law to exponentially stabilize linearized
trajectories [21]; Sarkar et al. who demonstrate the use of
feedback linearization to control dynamic rolling motions
for two planes in contact with a sphere [5]; and Choudhury
and Lynch, who stabilize the orientation of a ball rolling
in an ellipsoidal dish actuated along a single degree of
freedom [22].

III. ROLLING KINEMATICS
In this paper an object is a two-dimensional surface S embed-
ded in 3D space. An open, connected subset of a surface S is
defined as Sk . For a given Sk , the surface is parameterized by
the coordinates (uk , vk ) ∈ Uk ⊂ R2, and the shape is given by
fk : Uk → R3

: (uk , vk ) 7→ (xk , yk , zk ), where the (xk , yk , zk )
coordinates are expressed in a frame fixed to the body. The
triplet (Sk , fk ,Uk ) is called a coordinate chart, and a set of
coordinate charts is called an atlas for S if the union of the Sk
fully covers the surface S.
Throughout this paper we assume that rolling motion is

confined to a single coordinate chart of object 1, (S1, f1,U1),
and a single coordinate chart of object 2, (S2, f2,U2).
An example coordinate chart for a sphere covers all points

of the sphere except for the poles, with

f : U → R3
: (u, v) 7→

(ρ sin(u) cos(v), ρ sin(u) sin(v), ρ cos(u)), (1)

where ρ is the radius of the sphere, u satisfies 0 < u < π ,
and v satisfies −π < v < π .

It is assumed that f is continuous up to the second deriva-
tive (class C2) so that the local contact geometries (contact
frames and curvature associated with the first and second
derivatives of f , respectively) are uniquely defined. We also
assume that coordinate charts are orthogonal ( ∂f

∂u ·
∂f
∂v = 0).

Any smooth, regular surface can be locally represented this
way.

The configuration space of objects in rolling contact (see
Figure 2) can be parameterized by q = (u1, v1, u2, v2, ψ),
where U1 = (u1, v1) describes the contact point on the
surface of object 1, U2 = (u2, v2) describes the contact point
on the surface of object 2, andψ describes the angle of ‘‘spin’’
between contact frames {c1} and {c2} about their common
normal.

The linear velocity relating the relative motion between
objects expressed in {c2} can be written as V = (Vx ,Vy,Vz).
Similarly, the relative angular velocity at the contact
expressed in {c2} can be written as ω = (ωx , ωy, ωz). The
controls for pure rolling are the relative angular velocities
� = (ωx , ωy) about the x- and y-axes of the contact frame at
object 2, which defines the contact tangent plane. We use the
first-order kinematics derived by Sarkar et al. in [4] with the
pure-rolling assumptions applied (Vx = Vy = Vz = ωz = 0).
These are equivalent to the equations in [3] for the first-order
analysis, but are chosen to allow for direct extension to
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second-order planning in future work. The pure-rolling kine-
matics reproduced from [4] are

U̇1 = (
√
G1)−1Rψ (H̃1 +H2)−1

[
−ωy
ωx

]
,

U̇2 = (
√
G2)−1(H̃1 +H2)−1

[
−ωy
ωx

]
,

ψ̇ = σ101U̇1 + σ202U̇2, (2)

where Gi is the metric tensor of object i, the 2 × 2 rotation
matrix Rψ is defined as

Rψ =
[
cos(ψ) − sin(ψ)
− sin(ψ) − cos(ψ)

]
,

Hi is a 2 × 2 matrix that gives the curvature of the surface,
H̃1 is defined as H̃1 = RψH1Rψ , the scalar σi is defined
as σi =

√
g22,i/g11,i where g11,i and g22,i are the diagonal

entries of the metric tensor Gi, and 0i is a 1 × 2 matrix of
the Christoffel symbols of the second kind. Bold, capitalized
letters indicate matrices, and derivations of these expressions
are given in the Appendix and in [4].

Eq. (2) can be expressed in control-affine form as:

q̇ = F(q)� =

(√G1)−1Rψ
(
√
G2)−1

T1Rψ + T2

H−1rel

[
0 −1
1 0

]
�, (3)

where q = [u1 v1 u2 v2 ψ]T are the states, � = [ωx ωy]T

are the controls, Ti = σi0i(
√
Gi)−1, and Hrel = (H̃1 + H2)

represents the relative curvature at the contact.
An example of two spheres rolling with constant rel-

ative rotational velocity � = (ωx , 0) = ( 4π3 , 0)
along their respective ‘‘equators’’ is shown in Figure 3.
Figure 3(a) shows a visualization of the spheres, the con-
tact paths on the surface of each object Ui(t), and
the coordinate chart for object 2. Figure 3(b) shows
the values of the contact coordinates during the rolling
motion.

IV. PROBLEM STATEMENT
The goal is to find a pure-rolling trajectory and a stabilizing
feedback controller from an initial state qstart to a goal state
qgoal for two bodies in pure-rolling contact. We assume that
a path between qstart and qgoal exists within a single pair of
coordinate charts (f1 on object 1 and f2 on object 2). An
‘‘admissible’’ trajectory is defined as a set of states and con-
trols ξ (t) = (q(t), �(t)), from t = 0 to the final time t = T ,
that satisfies the first-order pure-rolling kinematics in Eq. (3).
A ‘‘valid’’ trajectory is defined as an admissible trajectory
that also satisfies qerror(T ) < η, where η is the tolerance on
the final state error and qerror(T ) = ||q(T )−qgoal||, where ||·||
corresponds to a weighted norm that puts contact parameter
errors and spin angle errors in common units. (Throughout
the rest of this paper, we use the Euclidean norm.) A stabiliz-
ing state-feedback controller about a trajectory is defined as
�fbk(q, t). With these definitions, the problem can be stated
as follows:

FIGURE 3. Example of object 1, the blue sphere of radius ρ1 = 1, rolling
on the equator of object 2, the red sphere of radius ρ2 = 3. The
coordinate charts are given by Eq. (1), the initial conditions are
q(0) = (π/2,0, π/2,0,0), and the constant relative rotational velocity is
� = (ωx ,0) = ( 4π

3 ,0). A visualization with the start and goal locations
and the contact trajectories Ui (t) is shown in (a). Note that the controls �
are measured in the object 2 contact frame {c2} with the x2-axis pointing
downwards and the contact normal n2 pointing out of object 2. A plot of
the contact coordinates is shown in (b), with the desired goal states qgoal
represented by stars. Note that u1 and u2 are equal throughout the
trajectory and therefore overlap.

Given: The surface parameterizations (f1, f2), the states
(qstart, qgoal), and the rolling time T ,

find: (1) a valid rolling trajectory ξsol(t) for t ∈ [0,T ] that
brings the system from q(0) = qstart to q(T ) = qgoal and (2)
a feedback controller �fbk(q, t) that stabilizes that trajectory.
In the following section we outline the multi-step process

we developed to solve the pure-rolling motion planning and
control problem.

V. MOTION PLANNING
A multi-step algorithm is established to solve the motion
planning problem presented in Section IV. Given the
model parameters, the start state qstart, and goal state qgoal,
the motion planner solves multiple problems of increasing
complexity to find a valid trajectory.

The first step is a two-state control (TSC) method
that solves a simplified motion planning problem that
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FIGURE 4. Flowchart of the multi-step motion planning algorithm and
stabilization method outlined in Sections V and VI, respectively. The
inputs are the start/goal states, the model, and the parameters. Two-state
control (see Section V-A) is used to generate the initial trajectory guess
ξTSC(t) = (qTSC(t),�TSC(t)) for the iterative direct collocation, and qdes(t)
is the straight-line desired path for the cost function in Eq. (5). Each
output trajectory ξiDC(t) = (qiDC(t),�iDC(t)) is recalculated using a
higher-order integration method and the goal error tolerance is checked
(qerror(T ) < η). If the trajectory is not valid, it is used as the initial
trajectory guess for the next iteration of the direct collocation method
with twice as many segments (N → 2N). This is repeated until a valid
trajectory is found, the maximum number of iDC iterations is reached,
or the optimization converges to an invalid point. The linear quadratic
regulator (LQR) step outputs a feedback control law �fbk(q, t) that
stabilizes the solution trajectory ξsol(t).

directly controls two of the five configuration vari-
ables. The output of the TSC planner is the trajectory
ξTSC(t) = (qTSC(t), �TSC(t)) consisting of the configurations
and controls as a function of time. The second step is the
iterative direct collocation (iDC) method that takes ξTSC
as the initial trajectory guess and runs an optimization to
find a coarse rolling trajectory (large time steps, simple
integration method) for the full five-dimensional configu-
ration. The control output from the optimization �iDC(t) is
then used to numerically integrate the first-order kinematics
using a higher-order integrator (MATLAB’s ode45), and the
goal error qerror(T ) is calculated. If the trajectory is valid
(qerror(T ) < η), then the optimization is stopped and the
trajectory is returned. If the terminal condition is not satisfied,
the previous trajectory serves as the initial trajectory guess for
a finer direct collocation optimizationwith twice asmany col-
location segments (N → 2N ). This is repeated until a valid
trajectory is found, the maximum number of iDC iterations
is reached, or the optimization converges to an invalid point.
A flowchart of the algorithm is shown in Figure 4, and the
details of the individual methods are given below.

A. TWO-STATE CONTROL (TSC)
The purpose of the two-state control method is to obtain the
control input that moves two states along the shortest path

to the goal state. The choice of which coordinates to control
will bias the optimization solutions toward different paths
in the state-space. In this paper we choose to control the
coordinatesU2(t) = [u2(t) v2(t)]T. An analysis of the planner
performance for different initial trajectory guess methods is
included in Section VIII-B.
We first linearly interpolate the object 2 coordinates from

U2(0) to U2(T ). With the trajectory U2(t) known, we cal-
culate the control input �(t) from the second expression in
Eq. (2), which results in:[

ωx(t)
ωy(t)

]
=

[
0 1
−1 0

]
(H̃1(t)+H2(t))

√
G2(t)U̇2(t). (4)

We then use qstart, �(t), and the other two kinemat-
ics expressions of Eq. (2) to calculate the trajectories of
the remaining three states u1(t), v1(t), and ψ(t). This
method generates a trajectory ξTSC(t) = (qTSC(t), �TSC(t))
that tracks the straight-line path between the start and
goal contact locations on object 2. Examples are shown
in Figures 3(b) and 8(a).

B. ITERATIVE DIRECT COLLOCATION (iDC)
The initial trajectory ξTSC(t) is admissible, but only two of
the five states reach the desired goal states. We therefore
perturb the input trajectory from the TSC method so that
q(T ) = qgoal, and to do this we use direct collocation. We
first describe the details of the direct collocation method, and
then outline our iterative version.

Direct collocation is a method for trajectory optimization
that optimizes an objective function J (ξ (t)) = J (q(t), �(t))
using polynomial spline approximations of the continuous
states and controls. We chose to use trapezoidal colloca-
tion where the control trajectory �(t) is represented by
piecewise-linear splines, the state trajectory q(t) is repre-
sented by a quadratic spline, and the trapezoidal rule is
used for integration. Higher-order representations such as
Hermite-Simpson collocation can also be used but with
increased computational cost [23]. We define the objective
function J (q(t), �(t)) as the sum of the terminal cost and the
running cost and omit the dependence on t for clarity:

J (q, �) = m(q(T ))+
∫ T

0
l(q, �)dt,

m(q(T )) =
1
2
(q(T )− qgoal)TP1(q(T )− qgoal),

l(q, �) =
1
2
(q− qdes)TQ(q− qdes)+

1
2
�TR�, (5)

where P1, Q, and R, penalize goal-state error, desired trajec-
tory deviation, and control cost respectively, and qdes(t) is a
nominal trajectory. The path qdes(t) is chosen as the linear
interpolation from qstart to qgoal, which penalizes motions
that do not move q towards the goal. Note that qdes(t) is not
admissible in general.

The collocation method divides the trajectory ξ (t) into N
segments, and theN+1 nodes at the ends of each segment are
called collocation points. Each collocation point is expressed
as ξk (t) = (q(tk ), �(tk )) for k ∈ [0, . . . ,N ]. For systems with
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m state variables and n control variables there are a total of
(N + 1)(m + n) collocation points. The dynamics between
each pair of sequential collocation points are enforced by the
following condition:

qk+1 − qk =
1
2
1tk (F(qk+1)�k+1 + F(qk )�k ),

k ∈ [0, . . . ,N − 1], (6)

where 1tk = (tk+1 − tk ) indicates the interval duration and
F(q)� is the first-order kinematics function from Eq. (3).
Equation (6) is unique to the choice of trapezoidal colloca-
tion, and other integration methods require a different con-
straint [23].

The optimal control problem can be represented as the
following nonlinear programming problem:

argmin
q(tk ), �(tk )

m(q(T ))+
N∑
i=0

l(q(tk ), �(tk ))1tk

such that h(q(t0) : q(tN );�(t0) : �(tN−1)) = 0,

g(q(t0) : q(tN );�(t0) : �(tN−1)) ≤ 0, (7)

where h(·) gives the equality constraints q(0) = qstart and
q(T ) = qgoal and enforces the first-order kinematics in
Eq. (6). The expression g(·) gives the inequality constraints
which constrain the controls (�min ≤ � ≤ �max) and
enforces any constraints on the configurations (e.g., due
to singularities in the coordinate chart). Equation (7) is a
finite-dimensional nonlinear optimization problem, and a
solution ξiDC(t) can be found using nonlinear optimizers such
as SNOPT, IPOPT, or MATLAB’s fmincon.

The integration error can be determined by comparing the
trajectory qiDC(t) from the direct collocation method with
the trajectory qfine(t), where qfine(t) is obtained by inte-
grating the initial state over the interval t = [0,T ] using
Eq. (3), the piecewise-linear output controls �iDC(t), and a
higher-order integrator with small time steps (dt ≤ 0.001).
With fewer segments N , the integration error is larger, but
there are fewer constraints for the nonlinear solver. This
means that the optimizer is more likely to find a solution, and
with less computational cost. The choice of N is therefore a
trade-off between computational cost/optimizer convergence
and integration error. We implemented the iterative direct
collocation (iDC) method to address this.

We first run the nonlinear optimization method using
MATLAB’s fmincon for a small number of segments
(N = 25) to find a trajectory ξiDC(t). The recalculated
path qfine(t) is found using smaller integration timesteps and
a higher-order integrator (ode45), and the planner is ter-
minated if the goal-state tolerance of the fine trajectory is
satisfied (qerror(T ) < η). If the goal-state error is too large,
the previous output trajectory serves as the initial trajectory
guess for the next iteration with twice as many segments
(N → 2N ). This is repeated until a valid trajectory ξsol(t)
is found, the maximum number of iDC iterations is reached,
or the optimization converges to an invalid point. Small values
of N result in good solutions but may require many iDC

iterations to converge to a solution, and large values will
increase N too quickly resulting in slower computation time
and convergence to invalid points. We chose to double the
segments between each iteration so the exact solution from
the previous iteration could be used, butN could be increased
by a fixed value 1N between each iteration to add an addi-
tional tuning parameter for the planning method.

VI. FEEDBACK CONTROL OF ROLLING SURFACES
To stabilize the rolling trajectory to state disturbances,
we construct a linear time-varying feedback controller based
on a linearization of the rolling kinematics about the planned
trajectory qsol(t). For this approach to be appropriate, the sys-
tem should be linearly controllable about the planned trajec-
tory, which may not always be the case, even if the system is
nonlinearly controllable.

A. LINEARIZATION ABOUT A TRAJECTORY
Given a nominal trajectory ξnom(t) = (qnom(t), �nom(t)),
we define perturbations about the trajectory as:

q̃(t) = q(t)− qnom(t), (8)

�̃(t) = �(t)−�nom(t). (9)

The perturbed version of the dynamics in Eq. (3) can be
written using a first-order Taylor expansion (and omitting the
dependence on t) as:

q̇nom + ˙̃q = F(qnom)�nom

+

[
∂(F(q)�)

∂q

]
nom

q̃

+

[
∂(F(q)�)
∂�

]
nom

�̃+ h.o.t., (10)

where [·]nom means the enclosed expressions are evalu-
ated along the nominal trajectory, and h.o.t. represents
higher-order terms. Because q̇nom = F(qnom)�nom and h.o.t.
are negligible for nearby trajectories, Eq. (10) simplifies to:

˙̃q =
[
∂(F(q)�)

∂q

]
nom︸ ︷︷ ︸

Ã(t)m×m

q̃+ [F(q)]nom︸ ︷︷ ︸
B̃(t)m×n

�̃, (11)

where m is the number of state variables and n is the number
of controls. We analyze the controllability properties of the
linear time-varying (LTV) system (Ã(t), B̃(t)) to determine
whether the nominal trajectory error (̃q(t), �̃(t)) can be sta-
bilized to zero by a simple linear controller.

B. CONTROLLABILITY OF LINEAR TIME-VARYING (LTV)
SYSTEMS
The controllability of an LTV system along a nominal trajec-
tory can be checked using the controllability gramian (e.g.,
Ch. 11.6 of [24]),

Wc(t1, t0) =
∫ t1

t0
8(t1, τ )B̃(τ )B̃(τ )T8(t1, τ )Tdτ, (12)
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where the state-transition matrix1 8(t1, τ ) and B̃ come from
Eq. (11) and correspond to the linearization about the nominal
trajectory. If the square matrix Wc(t1, t0) is non-singular on
the interval t ∈ [t0, t1], then the linearized trajectory can be
stabilized by an appropriate controller. For a system with m
state variables, any system with rank(Wc(t1, t0)) < m is rank
deficient, and therefore uncontrollable.

C. CONTROLLABILITY OF ROLLING TRAJECTORIES
The state q and controls � for the rolling system
are five-dimensional and two-dimensional, respectively,
so m = 5 and n = 2. Therefore Ã(t) is a
5 × 5 matrix, B̃(t) is a 5 × 2 matrix, and full rank of the
controllability gramian is 5.

While the linearized rolling dynamics of ‘‘generic’’ objects
are controllable about ‘‘generic’’ rolling trajectories, there are
at least three degenerate situations where the controllability
gramian fails to achieve full rank, as outlined below.

1) DEGENERATE GEOMETRY
An example of this case is two spheres of equal radius.
As shown by Li and Canny [14], the relative configuration of
two spheres of equal radius is uncontrollable by pure rolling,
and therefore the linearization of the kinematics about any
rolling trajectory is also uncontrollable. This conclusion is
independent of the initial contact configuration of the bodies.

2) DEGENERATE INITIAL CONFIGURATION
In other cases, the relative configuration of two objects
may be controllable by rolling from most configurations
but not from others. An example is shown in Figure 5,
where two identical ellipsoids, each with two equal principal
semi-axes and one longer principal semi-axis, make initial
contact such that the body geometries are symmetric about
the contact tangent plane. Regardless of the rolling motion
chosen from this initial configuration, the system will be con-
fined to a lower-dimensional subset of its five-dimensional
configuration space. More details can be found in [18] and
Section 24.4 of [19].

3) DEGENERATE TRAJECTORY
Finally, even if the two bodies are not geometrically degener-
ate and their initial configuration is not degenerate, a rolling
trajectory may be chosen such that the rank of the control-
lability gramian of the linearized dynamics about the rolling
trajectory never exceeds four. A trivial example is a stationary
trajectory. For stationary trajectories (q̇(t) = 0 ∀ t ∈ [0,T ]),
the matrix Ã(t) is zero and the matrix B̃(t) = B̃(t0) is
constant. B̃(t0) is always full rank because rolling is allowed
in two directions, so the controllability gramian is rank two
for all stationary trajectories. The linearized rolling system is
not controllable about stationary trajectories.

1The state-transition matrix8(t1, τ ) can be calculated for the LTV system
using methods in Section 9.5-9.6 of [24] such as the the Peano-Baker Series
or the fundamental solution matrix.

FIGURE 5. Example of uncontrollable initial condition for two identical
ellipsoids.

Another example is shown in the sphere-on-sphere trajec-
tory of Figure 3. This trajectory illustrates constant�, u1, u2,
and ψ . The linearized dynamics are governed by the linear
time invariant (LTI) matrices Ã and B̃:

Ã=


0 0 0 0 π

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−π 0
π

3
0 0

 , B̃=



0
3
4

3
4

0

0
1
4

−
1
4

0

0 0


. (13)

The Kalman controllability matrix [B̃ ÃB̃ Ã2B̃ Ã3B̃ Ã4B̃] is
only rank four.

Even a trajectory about which the linearized system is con-
trollable can be problematic to stabilize if the controllability
gramian is ill-conditioned; large controls may be required
to recover from small errors in certain state directions. Var-
ious metrics on the controllability gramian can be used to
quantify controllability, such as the minimum eigenvalue
(λmin(Wc(t1, t0))), the trace of the inverse, (tr(Wc

−1(t1, t0))),
and the determinant (det(Wc(t1, t0))) [25], [26]. One of
these measures could be included in the objective function
in Eq. (5) to bias the trajectory optimization away from
nearly-degenerate trajectories.

D. STABILIZATION OF ROLLING TRAJECTORIES
We use the linear quadratic regulator (LQR) to stabilize
the linearized dynamics in Eq. (11). LQR computes a
time-varying gain matrix K(t) that optimally reduces the
total cost for small perturbations about the nominal trajec-
tory. LQR requires a cost function, and we use the one
given in Eq. (5). We solve the matrix Riccati equation to
find the time varying feedback control matrix K(t) (see
Section 2.3 of [27]).

−Ṗ(t) = P(t)Ã(t)+ Ã(t)TP(t)

−P(t)B̃(t) R−1LQRB̃(t)
TP(t)+QLQR,

P(T ) = P1,LQR

K(t) = R−1LQRB̃(t)
TP(t). (14)
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TABLE 1. Parameters used in Section VII for the iterative direct
collocation algorithm.

The matrix K(t) is then used in the feedback control law

�fbk(q, t) = �nom(t)−K(t)(q(t)+ qnom(t)) (15)

to stabilize the nominal trajectory. The performance of this
feedback controller depends on the controllability properties
of the linearized dynamics.

VII. SIMULATION EXAMPLES
We now demonstrate the motion planning and feedback con-
trol method for a sphere rolling on a sphere and an ellipsoid
rolling on an ellipsoid. The sphere example demonstrates
the ability to generate shorter paths for nontrivial trajectories
when compared to the recent geometric planner for a sphere
rolling on a sphere in [17]. The ellipsoid example demon-
strates motion planning and feedback control for shapes with
spatially-varying curvature.

We use the SQP algorithm of MATLAB’s fmincon as
our nonlinear optimization solver, and a list of the param-
eters used is included in Table 1. The code was run on an
i7-4700MQCPU@ 2.40 GHz with 16 GB of RAM. For each
example we present the number of iDC iterations, computa-
tion time, final state error (qerror(T ) = ||q(T ) − qgoal||), and
trajectory cost from the cost function in Eq. (5).

A. SPHERE ON SPHERE
We compare the results of our planner to a geometric tra-
jectory planner for a sphere rolling on a sphere presented in
Section 4.2 of [17]. Geometric trajectory planners use prop-
erties of the surface geometries to derive analytic expressions
for the motion plans between start and goal states. While they
are guaranteed to find exact solutions, such approaches are
limited to specific geometries and solution paths are often
unnecessarily long. Convergence is not guaranteed for our
method, but in practice it works well and finds shorter paths.

Eq. (1) gives the parametric model of the spheres, and
their radii are ρ1 = 2 and ρ2 = 10. The start and goal
states are chosen as qstart = (π2 ,

π
4 ,

π
2 , 0, 0) and qgoal =

(2.19, −3π4 , 0.96, π4 , 0) to match the sphere-on-sphere exam-
ple in Section 4.2 of [17].

A solution was found after four iterations of the iDC
method, with a total computation time of 47 seconds, a final
state error of qerror(T ) = 0.002, and a trajectory cost
of 5.3. A visualization of the resulting motion plan is shown

FIGURE 6. The sphere-on-sphere solution trajectory from Section VII-A.
The smaller blue object 1 is rolling from bottom left to top right on the
larger red object 2, and is shown at times t = (0, T

3 ,
2T
3 , T ). The contact

path U1(t) is shown on the object at t = T , and the contact path U2(t) is
shown on object 2. The initial and goal states were chosen to compare to
the results from Rehan et al. [17], and our planned path U2(t) on
object 2 is approximately three times shorter than the solution from the
geometric planning method in that paper.

in Figure 6. The length of the pathU2(t) (the path on the larger
sphere) is approximately three times shorter than the solution
presented in [17]. An animation of the initial guess and final
trajectory is in the attached supplemental media.

B. ELLIPSOID ON ELLIPSOID
We now demonstrate the planner on the more complex exam-
ple of an ellipsoid rolling on an ellipsoid. Eq. (16) gives the
parametric model of the ellipsoids

fi : Ui→ R3
: (ui, vi) 7→

(ρia sin(ui) cos(vi), ρib sin(ui) sin(vi), ρic cos(ui)), (16)

where ui satisfies 0 < ui < π , vi satisfies −π < vi < π ,
and the principal semi-axes are chosen as (ρ1a, ρ1b, ρ1c) =
(1, 1, 1.5) and (ρ2a, ρ2b, ρ2c) = (3, 3, 5). The coordinate sys-
tems are orthogonal because ρ1a = ρ1b and ρ2a = ρ2b. The
start and goal states are chosen as qstart = (π/2, 0, π/2, 0, 0)
and qgoal = (π/2, 0, π/4,−π/2,−π/4). A solution was
found after four iterations of the iDC method, with a total
computation time of 61 seconds, a final state error of
qerror(T ) = 0.003, and a trajectory cost of 12.8. The resulting
path is shown in Figure 7. The contact coordinates and con-
trols for the initial trajectory guesses, the results from the first
iDC iteration, and the final trajectory are shown in Figure 8.
An animation of the initial guess and final trajectory is in the
attached supplemental media.

C. FEEDBACK CONTROL
This section demonstrates the performance of the
LQR controller in stabilizing trajectories with initial state per-
turbations. The weighting parameters for the LQR feedback
controller are given in Table 2. The weightsQLQR and P1,LQR
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FIGURE 7. Ellipsoid-on-ellipsoid visualization for the motion plan in
Section VII-B and Figure 8. The smaller blue object 1 rolls from bottom
right to top left on the larger red object 2, and is shown at times
t = (0, T

3 ,
2T
3 , T ). The contact path U1(t) is shown on object 1 at t = T ,

and the contact path U2(t) is shown on object 2. The U1(t) and U2(t)
trajectories are shown in Figure 8 (c).

TABLE 2. Parameters used in Section VII-C for the LQR feedback control
of rolling trajectories.

were both increased from the direct collocation optimization
weights to improve tracking performance and decrease the
final state error.

1) SPHERE-ON-SPHERE
We first demonstrate feedback control on the simple sphere-
on-sphere equator trajectory in Figure 3 with an initial
state perturbation of ε(q(0)) = (0.1, 0.05,−0.05,−0.1, 0),
where ε(q(t)) is the difference between the current and
nominal reference trajectory and is defined as ε(q(t)) =
q(t) − qnom(t). We set the nominal trajectory to ξnom(t) =
ξsol(t), and as mentioned in Section VI-C, the lin-
earized dynamics are not controllable about this degenerate
trajectory.

Figure 9(a) shows the individual and total coordinate error
over time. The norm of the initial state error is ||ε(q(0))|| =
0.16 and the norm of the final state error is ||ε(q(T ))|| =
0.08. LQR is ineffective at eliminating the error because
the linearized dynamics are uncontrollable about the nom-
inal trajectory. Animations of the open- and closed-loop
performance for the perturbed sphere-on-sphere trajectories
in Figures 3 and 6 can be seen in the supplemental media.

TABLE 3. Testing the planning method on 100 random goal states for
sphere-on-sphere and ellipsoid-on-ellipsoid rolling. Results are given as
‘‘mean (standard deviation)’’.

TABLE 4. Comparing the effect of the initial trajectory guess method for
100 random goal states for ellipsoid-on-ellipsoid rolling. The different
initial guess methods were two-state control on object 1, two-state
control on object 2, linear interpolation (q(t) = qdes, �(t) = 0), and
stationary (q̇(t) = 0, �(t) = 0). Results are given as ‘‘mean (standard
deviation)’’.

The controllability gramian of the linearized dynamics about
the sphere-on-sphere trajectory in Figure 6 is full rank, and
therefore LQR eliminates the state error.

2) ELLIPSOID-ON-ELLIPSOID
Figure 9(b) shows the individual and total coordinate error
over time for the nominal trajectory of Figure 7 and an
initial perturbation ε(q(0)) = (0.1, 0.05,−0.05,−0.1, 0).
The norm of the initial state error is ||ε(q(0))|| = 0.16 and
the norm of the final state error is ||ε(q(T ))|| = 0.0004. We
see that the feedback controller effectively recovers from the
initial error. An animation of the open and closed-loop perfor-
mance for the perturbed ellipsoid-on-ellipsoid trajectory can
be seen in the supplemental media.

VIII. DISCUSSION
A. ROBUSTNESS
To test the robustness of the proposed planner, we gener-
ated 100 random trajectory planning tasks for the sphere-on-
sphere and ellipsoid-on-ellipsoid. The initial state was fixed
at qstart = (π/2, 0, π/2, 0, 0) and goal states were chosen in
the range (0,−π, 0,−π,−π) < qgoal < π . The results are
shown in Table 3. The planner used the parameters in Table 1,
other than maximum fmincon function evaluations set to
15,000 and η set to 0.1 to decrease computation time.

These results demonstrate the ability of the planner to reli-
ably find solutions for random goal states. While the method
is not guaranteed to find a solution, it works well in practice.

B. EFFECT OF THE INITIAL TRAJECTORY GUESS
The initial trajectory guess to the iDC optimization is
‘‘two-state control,’’ which drives the contact coordinates
of object 2 directly to their desired final value. This tra-
jectory is admissible, i.e., it satisfies the rolling condi-
tions. Other initial trajectory guesses could be used, like
two-state control for the contact coordinates of object 1,
which is admissible; linear interpolation (q(t) = qdes(t),
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FIGURE 8. Contact coordinate plots and control plots for the ellipsoid-on-ellipsoid rolling plan in Figure 7. Column one shows the
initial trajectory guess from the two-state control method, column two shows the output trajectory from the first iteration of the
iterative direct collocation method (which fails to satisfy the tolerance criterion after accurate simulation), and column three shows
the solution trajectory. The stars in (a)-(c) show the desired goal states qgoal.

FIGURE 9. Error recovery of sphere-on-sphere (a) and ellipsoid-on-ellipsoid (b) under feedback control with an initial state
perturbation of ε(q(0)) = (0.1,0.05,−0.05,−0.1,0). The function ε(·) calculates the difference between input coordinate(s) and the
reference coordinate(s) in qnom(t), and ||ε(q)|| is the norm of the total coordinate error. The sphere trajectory in (a) is the equator
example given in Figure 3, where the controllability gramian is not full rank, and therefore LQR cannot eliminate the state error. The
ellipsoid trajectory in (b) is for the ellipsoid example in Figure 7. The controllability gramian for this trajectory is full rank and
therefore the controller is able to reduce the error to zero.
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�(t) = 0), which is inadmissible; and the stationary tra-
jectory (q̇(t) = 0, �(t) = 0), which is admissible. While
all types of initial trajectory guesses led to solutions in most
cases, the two-state control on object 2 performed the best
with the shortest planning times, lowest costs, smallest errors,
and highest success rate for random planning problems for the
ellipsoid-on-ellipsoid (Table 4). The size difference between
the objects could explain the difference between the perfor-
mance of TSC on objects 1 and 2. Because object 1 is smaller
than object 2, TSC1 generates short contact paths on object 2,
so the initial guess for TSC1 more closely resembles the
stationary initial guess.

IX. CONCLUSION AND FUTURE WORK
This paper presents a motion planner and feedback controller
for pure-rolling motions between general smooth rigid bod-
ies. The methods were demonstrated for a sphere rolling
on a sphere and an ellipsoid rolling on an ellipsoid. Future
work includes extending motion planning and control to
second-order kinematic and dynamic rolling. We are also
interested in methods that allow planning for more gen-
eral object parameterizations (non-orthogonal), or smooth
approximations of general surfaces represented by meshes.

APPENDIX
LOCAL GEOMETRY OF SMOOTH BODIES
Below are some expressions for the geometry of a surface that
are used to define the first-order kinematics in Section III.
References and derivations of these expressions can be found
in [4].

We represent the surface of each body in contact as a
mapping fi : (ui, vi) 7→ (xi, yi, zi) for objects i ∈ [1, 2]
(see Section III). It is assumed that fi is continuous up to
the second derivative (class C2) so that the local contact
geometries (contact frames and curvature associated with the
first and second derivatives of fi, respectively) are uniquely
defined. The natural bases at a point on a body are given
as xi = ∂fi/∂ui and yi = ∂fi/∂vi. We also assume that
coordinate charts are orthogonal (xi · yi = 0), and note that xi
and yi are not necessarily unit vectors. The normal is given as
ni = (xi × yi)/||xi × yi||.
The normalized Gauss frame at a point Ui on object i is

defined as the coordinate frame {ci} with origin at fi(Ui) and
coordinate axes given by

Roici =

[
xi
||xi||

,
yi
||yi||

, ni

]
, (17)

where Roici expresses the Gauss frame in the object i frame
{oi}. The metric tensor Gi is a 2× 2 positive-definite matrix
defined as

Gi =

[
xi · xi xi · yi
yi · xi yi · yi

]
. (18)

The coefficients gjk,i reference the indices of matrix Gi, and
Gi is diagonal (g12,i = g21,i = 0) when the coordinate chart fi
is orthogonal. The 2× 2 matrix Li is the second fundamental

form given by the expression

Li =


∂2fi
∂u2i
· ni

∂2fi
∂ui∂vi

· ni

∂2fi
∂vi∂ui

· ni
∂2fi
∂v2i
· ni

 . (19)

Hi combines the metric tensorGi with the second fundamen-
tal form Li and is given by,

Hi = (
√
Gi)−1Li(

√
Gi)−1. (20)

The 1× 2 array 0i is given by the expression

0i =
[
02
11,i 0

2
12,i

]
, (21)

where 02
11,i and 0

2
12,i are christoffel symbols of the second

kind given by

02
11,i =

(
∂xi
∂ui
· xi

)
g12i +

(
∂xi
∂ui
· yi

)
g22i ,

02
12,i =

(
∂xi
∂vi
· xi

)
g12i +

(
∂xi
∂vi
· yi

)
g22i , (22)

where gjki are entries (j, k) of the metric tensor inverse (Gi)−1.
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